JianmingTong

JianmingTong

Jianming Tong is a PhD candidate at Georgia Tech startin from 2021, a visiting researcher at MIT. He focuses on full-stack optimizations—spanning model, system, compiler, and hardware—for enhancing both efficiency and privacy of AI systems. He proposed a framework to approximate non-linear ML operators as polynomials to be compatible with Homomorphic Encryption (HE) without utility sacrifice, enabling privacy-preserving ML via HE (model, MLSys’23), and developed the CROSS compiler to convert HE workloads as AI workloads to be accelerated by existing Google TPUs, enabling immediate scalable low-cost privacy-preserving capability to existing AI stacks and designed a dataflow-layout co-switching reconfigurable accelerator for efficient inference of dynamic AI workloads (ISCA’24). These works are widely deployed in NVIDIA, Google, IBM, and recognized by Qualcomm Innovation Fellowship and Machine Learning and System Rising Star.