Hi @ManhBui
I am not having any problems using the latest versions of OpenFHE and Python API (from the main branches). It works fine for HEStd_NotSet (the example I ran is provided below). Most likely, there is a problem with your code.
BTW, why are you generating a key with index 0? It will never get used as the rotation by 0 is the input ciphertext itself.
from openfhe import *
mult_depth = 1
scale_mod_size = 50
batch_size = 8
parameters = CCParamsCKKSRNS()
parameters.SetMultiplicativeDepth(mult_depth)
parameters.SetScalingModSize(scale_mod_size)
parameters.SetBatchSize(batch_size)
parameters.SetSecurityLevel(HEStd_NotSet)
parameters.SetRingDim(4096)
cc = GenCryptoContext(parameters)
cc.Enable(PKESchemeFeature.PKE)
cc.Enable(PKESchemeFeature.KEYSWITCH)
cc.Enable(PKESchemeFeature.LEVELEDSHE)
cc.Enable(PKESchemeFeature.ADVANCEDSHE)
print("The CKKS scheme is using ring dimension: " + str(cc.GetRingDimension()))
keys = cc.KeyGen()
cc.EvalMultKeyGen(keys.secretKey)
cc.EvalRotateKeyGen(keys.secretKey, [1, -2])
eval_sum_row_keys = cc.EvalSumRowsKeyGen(keys.secretKey, rowSize=8)
x1 = [0.25, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0, 5.0]
x2 = [5.0, 4.0, 3.0, 2.0, 1.0, 0.75, 0.5, 0.25]
ptx1 = cc.MakeCKKSPackedPlaintext(x1)
ptx2 = cc.MakeCKKSPackedPlaintext(x2)
print("Input x1: " + str(ptx1))
print("Input x2: " + str(ptx2))
# Encrypt the encoded vectors
c1 = cc.Encrypt(keys.publicKey, ptx1)
c2 = cc.Encrypt(keys.publicKey, ptx2)
# Step 4: Evaluation
# Homomorphic additions
c_add = cc.EvalAdd(c1, c2)
# Homomorphic subtraction
c_sub = cc.EvalSub(c1, c2)
# Homomorphic scalar multiplication
c_scalar = cc.EvalMult(c1,4)
# Homomorphic multiplication
c_mult = cc.EvalMult(c1, c2)
# Homomorphic rotations
c_rot1 = cc.EvalRotate(c1, 1)
c_rot2 = cc.EvalRotate(c1, -2)
c_rot3 = cc.EvalSumRows(c1, 8, eval_sum_row_keys)
# Step 5: Decryption and output
# Decrypt the result of additions
ptAdd = cc.Decrypt(c_add,keys.secretKey)
# We set the precision to 8 decimal digits for a nicer output.
# If you want to see the error/noise introduced by CKKS, bump it up
# to 15 and it should become visible.
precision = 8
print("Results of homomorphic computations:")
result = cc.Decrypt(c1, keys.secretKey)
result.SetLength(batch_size)
print("x1 = " + str(result))
print("Estimated precision in bits: " + str(result.GetLogPrecision()))
# Decrypt the result of scalar multiplication
result = cc.Decrypt(c_scalar,keys.secretKey)
result.SetLength(batch_size)
print("4 * x1 = " + str(result))
# Decrypt the result of multiplication
result = cc.Decrypt(c_mult,keys.secretKey)
result.SetLength(batch_size)
print("x1 * x2 = " + str(result))
# Decrypt the result of rotations
result = cc.Decrypt(c_rot1,keys.secretKey)
result.SetLength(batch_size)
print("In rotations, very small outputs (~10^-10 here) correspond to 0's:")
print("x1 rotated by 1 = " + str(result))
result = cc.Decrypt(c_rot2,keys.secretKey)
result.SetLength(batch_size)
print("x1 rotated by -2 = " + str(result))
result = cc.Decrypt(c_rot3,keys.secretKey)
result.SetLength(batch_size)
print("EvalSumRown for = " + str(result))